These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tunable luminescence and energy transfer properties of Sr₃AlO₄F:RE³+ (RE = Tm/Tb, Eu, Ce) phosphors.
    Author: Shang M, Li G, Kang X, Yang D, Geng D, Lin J.
    Journal: ACS Appl Mater Interfaces; 2011 Jul; 3(7):2738-46. PubMed ID: 21671555.
    Abstract:
    Sr(3)AlO(4)F:RE(3+) (RE = Tm/Tb, Eu, Ce) phosphors were prepared by the conventional solid-state reaction. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectra, as well as lifetimes were utilized to characterize samples. Under the excitation of UV light, Sr(3)AlO(4)F:Tm(3+), Sr(3)AlO(4)F:Tb(3+), and Sr(3)AlO(4)F:Eu(3+) exhibit the characteristic emissions of Tm(3+) ((1)D(2)→(3)F(4), blue), Tb(3+) ((5)D(4)→(7)F(5), green), and Eu(3+) ((5)D(0)→(7)F(2), red), respectively. By adjusting the doping concentration of Eu(3+) ions in Sr(3)AlO(4)F:0.10Tm(3+), 0.10Tb(3+), zEu(3+), a white emission in a single composition was obtained under the excitation of 360 nm, in which an energy transfer from Tb(3+) to Eu(3+) was observed. For Sr(3)AlO(4)F:Ce(3+),Tb(3+) samples, the energy transfer from Ce(3+) to Tb(3+) is efficient and demonstrated to be a resonant type via a dipole-quadrupole interaction by comparing the experimental data and theoretical calculation. Furthermore, the critical distance of the Ce(3+) and Tb(3+) ions has also been calculated to be 9.05 Å. The corresponding luminescence and energy transfer mechanisms have been proposed in detail. These phosphors might be promising for use in near-UV LEDs.
    [Abstract] [Full Text] [Related] [New Search]