These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fatigue is mediated by cholinoceptors within the ventromedial hypothalamus independent of changes in core temperature.
    Author: Guimarães JB, Wanner SP, Machado SC, Lima MR, Cordeiro LM, Pires W, La Guardia RB, Silami-Garcia E, Rodrigues LO, Lima NR.
    Journal: Scand J Med Sci Sports; 2013 Feb; 23(1):46-56. PubMed ID: 21672029.
    Abstract:
    We investigated brain mechanisms modulating fatigue during prolonged physical exercise in cold environments. In a first set of studies, each rat was subjected to three running trials in different ambient temperatures (T(a)). At 8 °C and 15 °C, core body temperature (T(core)) decreased and increased, respectively, whereas at 12 °C, the T(core) did not change throughout the exercise. In another set of experiments, rats were randomly assigned to receive bilateral 0.2 μL injections of 2.5 × 10(-2) M methylatropine or 0.15 M NaCl solution into the ventromedial hypothalamic nuclei (VMH). Immediately after the injections, treadmill exercise was started. Each animal was subjected to two experimental trials at one of the following T(a) : 5 °C, 12 °C or 15 °C. Muscarinic blockade of the VMH reduced the time to fatigue (TF) in cold environments by 35-37%. In all T(a) studied, methylatropine-treated rats did not present alterations in T(core) and tail skin temperature compared with controls. These results indicate that, below the zone of thermoneutrality, muscarinic blockade of the VMH decreases the TF, independent of changes in T(core). In conclusion, our data suggest that VMH muscarinic transmission modulates physical performance, even when the effects of thermoregulatory adjustments on fatigue are minimal.
    [Abstract] [Full Text] [Related] [New Search]