These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The specific Na(+)/Ca(2+) exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells.
    Author: Nashida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T.
    Journal: Neurochem Int; 2011 Aug; 59(1):51-8. PubMed ID: 21672583.
    Abstract:
    The Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of intracellular Ca(2+) levels, and nitric oxide (NO) is involved in many pathological conditions including neurodegenerative disorders. We have previously found that sodium nitroprusside (SNP), an NO donor, causes apoptotic-like cell death in cultured glial cells via NCX-mediated pathways and the mechanism for NO-induced cytotoxicity is cell type-dependent. The present study examined using the specific NCX inhibitor 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400) whether NCX is involved in NO-induced injury in cultured neuronal cells. The treatment of neuroblastoma SH-SY5Y cells with SNP resulted in apoptosis and the cytotoxicity was blocked by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase inhibitor U0126 and the p38 MAP kinase (MAPK) inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP60012. SNP increased Ca(2+) influx and intracellular Ca(2+) levels. In addition, SNP increased ERK and p38 MAPK phosphorylation, and production of reactive oxygen species (ROS) in an extracellular Ca(2+)-dependent manner. These effects of SNP were prevented by SEA0400. SNP-induced cytotoxicity was not affected by inhibitors of the Ca(2+), Na(+) and store-operated/capacitative channels. Moreover, SNP-induced increase in intracellular Ca(2+) levels, ROS production and decrease in cell viability were blocked by a cGMP-dependent protein kinase (PKG) inhibitor. These results suggest that Ca(2+) influx via the reverse of NCX is involved in the cascade of NO-induced neuronal apoptosis and NO activates the NCX through guanylate cyclase/PKG pathway.
    [Abstract] [Full Text] [Related] [New Search]