These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone).
    Author: Safaei Nikouei N, Lavasanifar A.
    Journal: Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641.
    Abstract:
    A series of novel triblock copolymers composed of poly(ethylene glycol) (PEG) and poly(ε-caprolactone)-bearing benzyl carboxylate on the α-carbon of ε-caprolatone were synthesized through ring opening polymerization of α-benzyl carboxylate-ε-caprolactone by dihydroxylated PEG. The debenzylation of the synthesized copolymer, i.e., poly(α-benzyl carboxylate-ε-caprolactone)-b-PEG-b-poly(α-benzyl-carboxylate-ε-caprolactone) (PBCL-b-PEG-b-PBCL), in the presence of hydrogen gas using different levels of catalyst, was carried out to achieve copolymers with various degrees of free α-carboxyl to α-benzyl-ε-carboxylate groups on the hydrophobic block. Incomplete reduction of PBCL led to the formation of poly(α-carboxyl-co-benzyl caboxylate-ε-caprolactone) PCBCL in the lateral blocks at 27%, 50% and 75% carboxyl group substitution. The molecular weight and polydispersity of the resultant copolymers were estimated by (1)H NMR and MALDI-TOF. Synthesized triblock copolymers formed stable micelles at low concentrations (critical micellar concentrations (CMC) of 0.34-12.5 μg ml(-1)). Polymers containing carboxyl groups in their structure showed a pH-dependent increase in CMC. As the pH was raised from 4.0 to 9.0, CMC increased from 0.76 to 1.06 μg ml(-1), for 27% debenzylated polymer, and from 1.30 to 2.20 μg ml(-1), for 50% debenzylated polymers. In contrast, the CMC in polymers without carboxyl group was independent of pH (0.55 μg ml(-1)). Different changes in micellar size as a function of temperature was observed depending on the degree of debenzylation on the PCBCL block: polymers with 27% degree of debenzylation illustrated a rise in micelle size from ~38 to 55 nm as the temperature increased above 29°C, while polymers with 50% debenzylation showed a decrease in micelle size, from ~52 to 38 nm, with increase in temperature. A similar trend was observed at pH 4.5, 7.0 and 9.0 for polymers containing carboxyl groups on their hydrophobic block. The temperature for the onset of size change and/or the extent of aggregate size change was found to be dependent on the pH of the medium and the polymer concentration. The results point to a potential for the formation of thermo- and pH-responsive micelles from triblock copolymers of PEG and carboxyl substituted caprolactone. The results also imply a potential for the 27% debenzylated PCBCL-b-PEG-b-PCBCL copolymers to form a biodegradable thermoreversible gel with a transition temperature a few degrees below 37°C.
    [Abstract] [Full Text] [Related] [New Search]