These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Author: Yan GL, Guo YM, Yuan JM, Liu D, Zhang BK. Journal: Poult Sci; 2011 Jul; 90(7):1441-8. PubMed ID: 21673159. Abstract: The effects of sodium alginate oligosaccharides (sAO) on growth performance, cecal microbiota, Salmonella translocation to internal organs, and mucosal immune responses to challenge with Salmonella enterica serovar Enteritidis in broiler chickens were investigated. We designed an experiment with a 2 × 3 factorial arrangement, in which 3 feed treatments with supplementation of sAO at 0 (controls), 0.04, or 0.2% were provided in the diet for birds not challenged or challenged with Salmonella Enteritidis. There were 5 randomly placed replicate pens for each treatment. At 8 to 12 d of age, one-half the poults were orally gavaged with 10(8) cfu of Salmonella Enteritidis and the nonchallenged groups were inoculated with sterile PBS. Body weight loss and mortality resulting from Salmonella infection were mitigated by the addition of sAO. Supplementation of sAO at 0.2% was the most effective concentration for reducing Salmonella colonization and increasing the number of lactic acid bacteria in the cecum of chickens challenged with Salmonella Enteritidis. Cecal Salmonella Enteritidis-specific IgA production was significantly increased by sAO at 0.2% at 5 d postchallenge compared with the other treatments and was maintained at higher levels at the 2 dosages of sAO at 10 d postchallenge. With Salmonella Enteritidis challenge, sAO at 0.04% showed an anti-inflammatory effect through upregulation of interleukin (IL)-10 expression in the cecal tonsils. The supplementation level of 0.2% showed dramatic immunostimulatory activity by inducing interferon-γ, IL-10, and IL-1β mRNA expression in cecal tonsils of nonchallenged birds. However, the high level of sAO induced a robust mucosal immune response in the absence of a challenge, and this may have led to a decline in BW. These findings suggest that dietary sAO can decrease Salmonella colonization and improve intestinal barrier function and performance of chickens.[Abstract] [Full Text] [Related] [New Search]