These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model.
    Author: Vériter S, Aouassar N, Adnet PY, Paridaens MS, Stuckman C, Jordan B, Karroum O, Gallez B, Gianello P, Dufrane D.
    Journal: Biomaterials; 2011 Sep; 32(26):5945-56. PubMed ID: 21676459.
    Abstract:
    This study investigates the potential of bone marrow (BM-MSCs) versus adipose mesenchymal stem cells (AMSCs) to potentiate the oxygenation of encapsulated islets in a subcutaneous bioartificial pancreas. Oxygen pressures (inside subcutaneous implants) were followed in vivo (by electronic paramagnetic resonance) in non-diabetic/diabetic rats transplanted with encapsulated porcine islets or empty implants up to 4 weeks post-transplantation. After graft explantation, neoangiogenesis surrounding the implants was assessed by histomorphometry. Angiogenic properties of BM-MSCs and AMSCs were first assessed in vitro by incubation of the cells in hypoxia chambers, under normoxic/hypoxic and hypo-/hyperglycemic conditions, followed by quantification of vascular endothelial growth factor (VEGF) release. Second, the in vivo aspect was studied by subcutaneous transplantation of encapsulated BM-MSCs and AMSCs in diabetic rats and assessment of the cells' angiogenic properties as described above. Diabetic state and islet encapsulation induced a significant decrease of oxygenation of the subcutaneous implant and an increased number of cells expressing VEGF. AMSCs demonstrated a significantly higher VEGF secretion than BM-MSCs in vitro. In vivo, AMSCs improved the implant's oxygenation and vascularization. Diabetes and islet encapsulation significantly reduced the oxygenation of a subcutaneous bioartificial pancreas. AMSCs can improve oxygenation by VEGF release in hypoxia and hyperglycemia states.
    [Abstract] [Full Text] [Related] [New Search]