These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Author: Ikeda K, Yamaguchi T, Fukunaga S, Hoshino M, Matsuzaki K. Journal: Biochemistry; 2011 Jul 26; 50(29):6433-40. PubMed ID: 21682276. Abstract: It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ) monomer to aggregated toxic Aβ rich in β-sheet structures is central to the development of Alzheimer's disease. However, the mechanism of the abnormal aggregation of Aβ in vivo is not well understood. We have proposed that ganglioside clusters in lipid rafts mediate the formation of amyloid fibrils by Aβ, the toxicity and physicochemical properties of which are different from those of amyloids formed in solution. In this paper, the mechanism by which Aβ-(1-40) fibrillizes in raftlike lipid bilayers composed of monosialoganglioside GM1, cholesterol, and sphingomyelin was investigated in detail on the basis of singular-value decomposition of circular dichroism data and analysis of fibrillization kinetics. At lower protein densities in the membrane (Aβ:GM1 ratio of less than ∼0.013), only the helical species exists. At intermediate protein densities (Aβ:GM1 ratio between ∼0.013 and ∼0.044), the helical species and aggregated β-sheets (∼15-mer) coexist. However, the β-structure is stable and does not form larger aggregates. At Aβ:GM1 ratios above ∼0.044, the β-structure is converted to a second, seed-prone β-structure. The seed recruits monomers from the aqueous phase to form amyloid fibrils. These results will shed light on a molecular mechanism for the pathogenesis of the disease.[Abstract] [Full Text] [Related] [New Search]