These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scattering of obliquely incident shear waves from a cylindrical cavity.
    Author: Aldrin JC, Blodgett MP, Lindgren EA, Steffes GJ, Knopp JS.
    Journal: J Acoust Soc Am; 2011 Jun; 129(6):3661-75. PubMed ID: 21682391.
    Abstract:
    Prior work has proposed the use of ultrasonic angle-beam shear wave techniques to detect cracks of varying angular location around fastener sites by generating and detecting creeping waves. To better understand the nature of the scattering problem and quantify the role of creeping waves in fastener site inspections, a 3D analytical model was developed for the propagation and scattering of an obliquely incident plane shear wave from a cylindrical cavity with arbitrary shear wave polarization. The generation and decay of the spiral creeping waves was found to be dependent on both the angle of incidence and polarization of the plane shear wave. A difference between the angle of displacement in 3D and the direction of propagation for the spiral creeping wave was observed and attributed to differences in the curvature of the cavity surface for the tangential and vertical (z) directions. Using the model, practical insight was presented on measuring the displacement response in the far-field from the hole. Both analytical and experimental results highlighted the value of the diffracted and leaky spiral creeping wave signals for nondestructive evaluation of a crack located on the cavity. Last, array and signal processing methods are discussed to improve the resolution of the weaker creeping wave signals in the presence of noise.
    [Abstract] [Full Text] [Related] [New Search]