These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. Author: Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG. Journal: FEMS Microbiol Lett; 2011 Sep; 322(1):82-9. PubMed ID: 21682764. Abstract: Many methane-oxidizing bacteria (MOB) have been shown to aerobically oxidize ammonia and hydroxylamine (NH(2)OH) to produce nitrite and nitrous oxide (N(2)O). Genome sequences of alphaproteobacterial, gammaproteobacterial, and verrucomicrobial methanotrophs revealed the presence of haoAB, cytL, cytS, nirS or nirK, and norCB genes that may be responsible for N(2)O production, and additional haoAB genes were sequenced from two strains of Methylomicrobium album. The haoAB genes of M. album ATCC 33003 were inducible by ammonia and NH(2)OH, similar to haoAB induction by ammonia in Methylococcus capsulatus Bath. Increased expression of genes encoding nitric oxide reductase (cNOR; norCB) was measured upon exposure of M. capsulatus Bath to NaNO(2) and NO-releasing sodium nitroprusside. Only incubations of M. capsulatus Bath with methane, ammonia, and nitrite produced N(2)O. The data suggest a possible pathway of nitrite reduction to NO by reversely operating NH(2)OH oxidoreductase and NO reduction to N(2)O by cNOR independently or in conjunction with ammonia-induced enzymes (i.e. HAO or cytochrome c'-β). Results of this study show that MOB likely have diverse mechanisms for nitrogen oxide metabolism and detoxification of NH(2)OH that involve conventional and unconventional enzymes.[Abstract] [Full Text] [Related] [New Search]