These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough. Author: Bowes BD, Lenhoff AM. Journal: J Chromatogr A; 2011 Jul 22; 1218(29):4698-708. PubMed ID: 21683363. Abstract: Protein transport behavior was compared for the traditional SP Sepharose Fast Flow and the dextran-modified SP Sepharose XL and Capto S resins. Examination of the dynamic binding capacities (DBCs) revealed a fundamental difference in the balance between transport and equilibrium capacity limitations when comparing the two resin classes, as reflected by differences in the locations of the maximum DBCs as a function of salt. In order to quantitatively compare transport behavior, confocal microscopy and batch uptake experiments were used to obtain estimates of intraparticle protein diffusivities. For the traditional particle, such diffusivity estimates could be used to predict column breakthrough behavior accurately. However, for the dextran-modified media, neither the pore- nor the homogeneous-diffusion model was adequate, as experimental dynamic binding capacities were consistently lower than predicted. In examining the shapes of breakthrough curves, it was apparent that the model predictions failed to capture two features observed for the dextran-modified media, but never seen for the traditional resin. Comparison of estimated effective pore diffusivities from confocal microscopy and batch uptake experiments revealed a discrepancy that led to the hypothesis that protein uptake in the dextran-modified resins could occur with a shrinking-core-like sharp uptake front, but with incomplete saturation. The reason for the incomplete saturation is speculated to be that protein initially fills the dextran layer with inefficient packing, but can rearrange over time to accommodate more protein. A conceptual model was developed to account for the partial shrinking-core uptake to test whether the physical intuition led to predictions consistent with experimental behavior. The model could correctly reproduce the two unique features of the breakthrough curves and, in sample applications, parameters found from the fit of one breakthrough curve could be used to adequately match breakthrough at a different flow rate or batch uptake behavior.[Abstract] [Full Text] [Related] [New Search]