These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method.
    Author: Tang W, Li Q, Gao S, Shang JK.
    Journal: J Hazard Mater; 2011 Aug 15; 192(1):131-8. PubMed ID: 21684075.
    Abstract:
    Ultrafine iron oxide (α-Fe(2)O(3)) nanoparticles were synthesized by a solvent thermal process and used to remove arsenic ions from both lab-prepared and natural water samples. The α-Fe(2)O(3) nanoparticles assumed a near-sphere shape with an average size of about 5 nm. They aggregated into a highly porous structure with a high specific surface area of ∼ 162 m(2)/g, while their surface was covered by high-affinity hydroxyl groups. The arsenic adsorption experiment results demonstrated that they were effective, especially at low equilibrium arsenic concentrations, in removing both As(III) and As(V) from lab-prepared and natural water samples. Near the neutral pH, the adsorption capacities of the α-Fe(2)O(3) nanoparticles on As(III) and As(V) from lab-prepared samples were found to be no less than 95 mg/g and 47 mg/g, respectively. In the presence of most competing ions, these α-Fe(2)O(3) nanoparticles maintained their arsenic adsorption capacity even at very high competing anion concentrations. Without the pre-oxidation and/or the pH adjustment, these α-Fe(2)O(3) nanoparticles effectively removed both As(III) and As(V) from a contaminated natural lake water sample to meet the USEPA drinking water standard for arsenic.
    [Abstract] [Full Text] [Related] [New Search]