These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy. Author: Li D, Yu Q, Li SS, Wan HQ, Liu LJ, Qi L, Liu B, Gao F, Dong L, Chen Y. Journal: Chemistry; 2011 May 09; 17(20):5668-79. PubMed ID: 21688407. Abstract: NO reduction by CO was investigated over CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuOMn2O3/γ-Al2O3 model catalysts before and after CO pretreatment at 300 °C. The CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst exhibited higher catalytic activity than did the other catalysts. Based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis diffuse reflectance spectroscopy (DRS), Raman, and H2-temperature-programmed reduction (TPR) results, as well as our previous studies, the possible interaction model between dispersed copper and manganese oxide species as well as γ-Al2O3 surface has been proposed. In this model, Cu and Mn ions occupied the octahedral vacant sites of γ-Al2O3, with the capping oxygen on top of the metal ions to keep the charge conservation. For the fresh CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, the -Cu-O-Cu- and -Mn-O-Mn- species were formed on the surface of γ-Al2O3, respectively; but for the fresh CuO-Mn2O3/γ-Al2O3 catalyst, -Cu-O-Mn- species existed on the surface of -Al2O3. After CO pretreatment, -Cu-□-Cu- and -Mn-□-Mn- (□ represents surface oxygen vacancy (SOV)) species would be formed in CO-pretreated CuO/γ-Al2O3 and CO-pretreated Mn2O3/γ-Al2O3 catalysts, respectively; whereas -Cu-□-Mn- species existed in CO-pretreated CuO-Mn2O3/γ-Al2O3. Herein, a new concept, surface synergetic oxygen vacancy (SSOV), which describes the oxygen vacancy formed between the individual Mn and Cu ions, is proposed for CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst. In addition, the role of SSOV has also been approached by NO temperature-programmed desorption (TPD) and in situ FTIR experiments. The FTIR results of competitive adsorption between NO and CO on all the CO-pretreated CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuO-Mn2O3/γ-Al2O3 samples demonstrated that NO molecules mainly were adsorbed on Mn2+ and CO mainly on Cu+ sites. The current study suggests that the properties of the SSOVs in CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst were significantly different to SOVs formed in CO-pretreated CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, and the SSOVs played an important role in NO reduction by CO.[Abstract] [Full Text] [Related] [New Search]