These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electronic structure, magnetic properties and electrical resistivity of the Fe(2)V(1-x)Ti(x)Al Heusler alloys: experiment and calculation.
    Author: Slebarski A, Goraus J, Deniszczyk J, Skoczeń L.
    Journal: J Phys Condens Matter; 2006 Nov 22; 18(46):10319-34. PubMed ID: 21690920.
    Abstract:
    The aim of this work is to investigate electronic structure, magnetic properties and electrical resistivity of Fe(2)V(1-x)Ti(x)Al Heusler alloys. Numerical calculations give a pseudogap at the Fermi level for the majority-spin band of Fe(2)TiAl and a magnetic moment larger than 0.9 μ(B), whereas the ground state of Fe(2)VAl is calculated as a nonmagnetic semimetal with a very low total density of states at the Fermi level. In our calculations the remaining alloys of the Fe(2)V(1-x)Ti(x)Al series are nonmagnetic for x<0.1 and weakly magnetic for 0.1<x≤1. The magnetic moment μ of the series of Fe(2)V(1-x)Ti(x)Al compounds scales with the number of valence electrons and fits well to the Slater-Pauling curve. We also present a study of the electronic transport properties and magnetic susceptibility. The resistivities ρ(T) of Fe(2)VAl and Fe(2)V(0.9)Ti(0.1)Al are large and exhibit a negative temperature coefficient dρ/dT of the resistivity between 2 and 300 K. Below 20 K, ρ(T) also shows an activated character. The magnetic susceptibility of Fe(2)VAl and Fe(2)V(0.9)Ti(0.1)Al shows a maximum at ∼2 K which could reflect either the disorder effect or the hybridization gap, characteristic of Kondo insulators.
    [Abstract] [Full Text] [Related] [New Search]