These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fate of perfluorinated carboxylates and sulfonates during snowmelt within an urban watershed.
    Author: Meyer T, De Silva AO, Spencer C, Wania F.
    Journal: Environ Sci Technol; 2011 Oct 01; 45(19):8113-9. PubMed ID: 21692458.
    Abstract:
    The transport dynamics of perfluorinated carboxylic acids and sulfonates during snowmelt in the highly urbanized Highland Creek watershed in Toronto, Canada was investigated by analyzing river water, bulk snow, and groundwater, sampled in February and March 2010, by means of liquid chromatography-tandem mass spectrometry. Perfluorohexanoate, perfluorooctanoate, and perfluorooctane sulfonate were dominant in river water, with concentrations of 4.0-14 ng·L(-1), 2.2-7.9 ng·L(-1), and 2.1-6.5 ng·L(-1), respectively. Relatively high levels of perfluorohexanoate may be related to the recent partial replacement in various consumer products of perfluorooctyl substances with shorter-chained perfluorinated compounds (PFCs). Highest PFC concentrations were found within the more urbanized part of the drainage area, suggestive of residential, industrial, and/or traffic-related sources. The riverine flux of PFCs increased during the snowmelt period, but only approximately one-fifth of the increased flux can be attributed to PFCs present in the snowpack, mostly because concentration in snow are generally quite low compared to those in river water. The remainder of the increased flux must be due to the mobilization of PFCs by the high flow conditions prevalent during snowmelt. Run-off behavior was clearly dependent on perfluoroalkyl chain length: Dilution with relatively clean snowmelt water caused a drop in the river water concentrations of short-chain PFCs at high flow during early melting. This prevented an early concentration peak of those water-soluble PFCs within the stream, as could have been expected in response to their early release from a melting snowpack. Instead, concentrations of particle-associated long-chain PFCs in creek water peaked early in the melt, presumably because high flow mobilized contaminated particles from impervious surfaces in the more urbanized areas of the watershed. The ability to enter the subsurface and deeper groundwater aquifers increased with the PFCs' water solubility, that is, was inversely related to perfluoroalkyl chain length.
    [Abstract] [Full Text] [Related] [New Search]