These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roles of the Aspergillus nidulans UDP-galactofuranose transporter, UgtA in hyphal morphogenesis, cell wall architecture, conidiation, and drug sensitivity. Author: Afroz S, El-Ganiny AM, Sanders DA, Kaminskyj SG. Journal: Fungal Genet Biol; 2011 Sep; 48(9):896-903. PubMed ID: 21693196. Abstract: Galactofuranose (Galf) is the 5-member-ring form of galactose found in the walls of fungi including Aspergillus, but not in mammals. UDP-galactofuranose mutase (UgmA, ANID_3112.1) generates UDP-Galf from UDP-galactopyranose (6-member ring form). UgmA-GFP is cytoplasmic, so the UDP-Galf residues it produces must be transported into an endomembrane compartment prior to incorporation into cell wall components. ANID_3113.1 (which we call UgtA) was identified as being likely to encode the A. nidulans UDP-Galf transporter, based on its high amino acid sequence identity with A. fumigatus GlfB. The ugtAΔ phenotype resembled that of ugmAΔ, which had compact colonies, wide, highly branched hyphae, and reduced sporulation. Like ugmAΔ, the ugtAΔ hyphal walls were threefold thicker than wild type strains (but different in appearance in TEM), and accumulated exogenous material in liquid culture. AfglfB restored wild type growth in the ugtAΔ strain, showing that these genes have homologous function. Immunostaining with EBA2 showed that ugtAΔ hyphae and conidiophores lacked Galf, which was restored in the AfglfB-complemented strain. Unlike wild type and ugmAΔ strains, some ugtAΔ metulae produced triplets of phialides, rather than pairs. Compared to wild type strains, spore production for ugtAΔ was reduced to 1%, and spore germination was reduced to half. UgtA-GFP had a punctate distribution in hyphae, phialides, and young spores. Notably, the ugtAΔ strain was significantly more sensitive than wild type to Caspofungin, which inhibits beta-glucan synthesis, suggesting that drugs that could be developed to target UgtA function would be useful in combination antifungal therapy.[Abstract] [Full Text] [Related] [New Search]