These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study. Author: Ames JB, Mathies RA. Journal: Biochemistry; 1990 Aug 07; 29(31):7181-90. PubMed ID: 2169875. Abstract: The kinetics of bacteriorhodopsin's photocycle have been analyzed at pH 5, 6, 7, 8, and 8.6 by using time-resolved resonance Raman spectroscopy. The concentrations of the various intermediates as a function of time were determined by following their resonance Raman intensities using 502-nm (L550, N550, BR568), 458-nm (M412), and 752-nm (O640) excitation. The spectral contributions to the pump + probe data from each intermediate were quantitatively separated by least-squares decomposition. These relative concentrations were then converted to absolute concentrations by using a conservation of molecules constraint. This enabled the unambiguous refinement of a variety of kinetic models to find the simplest one that accurately describes the data. The kinetic data, including the biphasic decay of L550 and M412, are best reproduced by a sequential scheme including back-reactions (BR----L----M----N----O----BR). In addition, the kinetics of the L----M and N----O steps are found to be pH-dependent. Both the forward and reverse rate constants connecting L550 and M412 increase with pH, confirming earlier proposals of catalyzed Schiff base deprotonation at alkaline pH. Below pH 7, the N550----O640 rate constant is independent of pH, but it decreases linearly with pH above 7. This indicates that the protein must pick up a proton during the N550----O640 transition and that this process becomes rate determining above pH 7. There must, therefore, be an intermediate between N550 and O640 which we denote as N+550. A molecular graphics model is presented which incorporates these observations into a mechanism for proton pumping.[Abstract] [Full Text] [Related] [New Search]