These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Introduced Siberian chipmunks (Tamias sibiricus barberi) harbor more-diverse Borrelia burgdorferi sensu lato genospecies than native bank voles (Myodes glareolus).
    Author: Marsot M, Sigaud M, Chapuis JL, Ferquel E, Cornet M, Vourc'h G.
    Journal: Appl Environ Microbiol; 2011 Aug 15; 77(16):5716-21. PubMed ID: 21705536.
    Abstract:
    Little attention has been given in scientific literature to how introduced species may act as a new host for native infectious agents and modify the epidemiology of a disease. In this study, we investigated whether an introduced species, the Siberian chipmunk (Tamias sibiricus barberi), was a potentially new reservoir host for Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. First, we ascertained whether chipmunks were infected by all of the B. burgdorferi sensu lato genospecies associated with rodents and available in their source of infection, questing nymphs. Second, we determined whether the prevalence and diversity of B. burgdorferi sensu lato in chipmunks were similar to those of a native reservoir rodent, the bank vole (Myodes glareolus). Our research took place between 2006 and 2008 in a suburban French forest, where we trapped 335 chipmunks and 671 voles and collected 743 nymphs of ticks that were questing for hosts by dragging on the vegetation. We assayed for B. burgdorferi sensu lato with ear biopsy specimens taken from the rodents and in nymphs using PCR and restriction fragment length polymorphism (RFLP). Chipmunks were infected by the three Borrelia genospecies that were present in questing nymphs and that infect rodents (B. burgdorferi sensu stricto, B. afzelii, and B. garinii). In contrast, voles hosted only B. afzelii. Furthermore, chipmunks were more infected (35%) than voles (16%). These results may be explained by the higher exposure of chipmunks, because they harbor more ticks, or by their higher tolerance of other B. burgdorferi sensu lato genospecies than of B. afzelii. If chipmunks are competent reservoir hosts for B. burgdorferi sensu lato, they may spill back B. burgdorferi sensu lato to native communities and eventually may increase the risk of Lyme disease transmission to humans.
    [Abstract] [Full Text] [Related] [New Search]