These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine.
    Author: Abbaspour A, Noori A.
    Journal: Biosens Bioelectron; 2011 Aug 15; 26(12):4674-80. PubMed ID: 21715153.
    Abstract:
    An electrochemical sensor for simultaneous quantification of serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified carbon paste electrode has been developed. Synergistic effect of multi-walled carbon nanotube (MWCNT) in addition to the pre-concentrating effect of β-cyclodextrin (β-CD) as well as its different inclusion complex stability with 5-HT and DA was used to construct an electrochemical sensor for quantification of these important neurotransmitters. The overlapping anodic peaks of 5-HT and DA at 428 mV on bare electrode resolved in two well-defined voltammetric peaks at 202 and 363 mV vs. Ag/AgCl respectively. The oxidation mechanism of 5-HT and DA on the surface of the electrode was investigated by cyclic voltammetry and it was found that the electrode processes are pH dependent and electrochemical oxidation of 5-HT is totally irreversible while the electrode gave a more reversible process to DA. Under optimized conditions, linear calibration curves were obtained in the range of about 4-200 μM with a detection limits down to sub-μM levels (S/N=3) after 20-s accumulation, for both. The proposed sensor was shown to be remarkably selective for 5-HT and DA in matrices containing different species including ascorbic acid and uric acid. The suitability of the developed method was tested for the determination of 5-HT and DA in the Randox Synthetic Plasma samples and acceptable recoveries were obtained for a set of spiked samples.
    [Abstract] [Full Text] [Related] [New Search]