These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1. Author: Braun L, Dürst M, Mikumo R, Gruppuso P. Journal: Cancer Res; 1990 Nov 15; 50(22):7324-32. PubMed ID: 2171761. Abstract: The transforming growth factor (TGF) beta s are multifunctional polypeptide growth factors with diverse biological effects, including inhibition of epithelial cell proliferation both in vitro and in vivo. To investigate the possible role of TGF beta 1 in the regulation of papillomavirus infection and papillomavirus-associated transformation, we compared the response to TGF beta 1 of normal keratinocytes, human papillomavirus, type 16 (HPV 16)-positive-immortalized keratinocytes (nontumorigenic), and HPV 16-positive cervical carcinoma cells (tumorigenic) with respect to DNA synthesis and protooncogene expression. All HPV 16-immortalized cell lines were nearly as inhibited by TGF beta 1 as normal keratinocytes, whereas two cervical carcinoma cell lines (Caski and Siha) were refractory to growth inhibition by TGF beta 1. Cell surface receptors for TGF beta 1 were present on both normal and carcinoma cell lines. In all cases, growth inhibition by TGF beta 1 was accompanied by suppression of Steady-state levels of c-myc mRNA. In contrast, TGF beta 1 induced the expression of c-jun mRNA transcripts in normal, immortalized, and tumorigenic cells. We also studied the effect of TGF beta 1 on HPV 16 mRNA expression. Steady-state levels of HPV 16 mRNA transcripts were suppressed by TGF beta 1 in the nontumorigenic HPK cells but were unaffected in the tumorigenic lines. These findings suggest that TGF beta 1 may be an in vivo modulator of HPV infection and that loss of responsiveness to this growth inhibitory signal may be involved in HPV-associated malignant transformation.[Abstract] [Full Text] [Related] [New Search]