These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye.
    Author: Momose-Sato Y, Nakamori T, Sato K.
    Journal: Neuroscience; 2011 Sep 29; 192():781-92. PubMed ID: 21718760.
    Abstract:
    We investigated functional organization of the vagus nerve (N. X)- and glossopharyngeal nerve (N. IX)-related nuclei in the embryonic rat brainstem and compared their development and spatial distribution patterns, using multiple-site optical recording with a fast voltage-sensitive dye, NK2761. Intact brainstem preparations with N. X and N. IX attached were dissected from E13-E16 rat embryos, and electrical responses evoked by N. X/N. IX stimulation were optically recorded from many loci of the stained preparations. We analyzed optical waveforms and separated fast and slow optical signals corresponding to the antidromic/orthodromic action potentials and the excitatory postsynaptic potentials (EPSPs), respectively. We constructed contour line maps of signal amplitudes and identified motor and sensory nuclei of N. X and N. IX. In the N. X-related motor nucleus (the dorsal motor nucleus of the vagus nerve: DMNV), the fast signals were distributed in multiple-peak patterns, suggesting that the neurons and/or their activity are not distributed uniformly within the motor nuclei at early developmental stages. In the sensory nucleus (the nucleus of the tractus solitarius: NTS), the EPSPs were first detected from E15 in normal physiological solution for both N. X and N. IX. The N. IX-related NTS partially overlapped with the N. X-related NTS, but the peak locations were different between these two nerves. The results obtained in this study suggest that functional organization of the N. X- and N. IX-related nuclei changes dynamically with development in the embryonic rat brainstem.
    [Abstract] [Full Text] [Related] [New Search]