These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of substrate on the atomic structure and physical properties of thermoelectric Ca₃Co₄O₉ thin films.
    Author: Qiao Q, Gulec A, Paulauskas T, Kolesnik S, Dabrowski B, Ozdemir M, Boyraz C, Mazumdar D, Gupta A, Klie RF.
    Journal: J Phys Condens Matter; 2011 Aug 03; 23(30):305005. PubMed ID: 21719960.
    Abstract:
    The incommensurately layered cobalt oxide Ca(3)Co(4)O(9) exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca(3)Co(4)O(9) thin films grown on cubic perovskite SrTiO(3), LaAlO(3), and (La(0.3)Sr(0.7))(Al(0.65)Ta(0.35))O(3) substrates and on hexagonal Al(2)O(3) (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO(2) layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca(2)CoO(3) buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO(2) stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca(3)Co(4)O(9) films due to additional phonon scattering sites, necessary for improved thermoelectric properties.
    [Abstract] [Full Text] [Related] [New Search]