These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies of the fluorescence light-up effect of amino-substituted benzo[b]quinolizinium derivatives in the presence of biomacromolecules. Author: Faulhaber K, Granzhan A, Ihmels H, Otto D, Thomas L, Wells S. Journal: Photochem Photobiol Sci; 2011 Oct; 10(10):1535-45. PubMed ID: 21720633. Abstract: A comparative study of the ability of amino-substituted benzo[b]quinolizinium derivatives to act as DNA- or protein-sensitive fluorescent probes is presented. Spectrophotometric titrations, DNA denaturation studies and viscometric titrations showed that all tested aminobenzo[b]quinolizinium derivatives intercalate into DNA with binding constants K(b) = 10(4)-10(5) M(-1). The intense fluorescence of the 9-aminobenzo[b]quinolizinium (Φ(fl) = 0.41) as well as the intrinsically very weak emission of the 7-aminobenzo[b]quinolizinium (Φ(fl) < 0.005) are quenched by the addition of DNA, most likely caused by a photoinduced electron transfer (PET) between the excited intercalated ligand and the DNA bases. The 6-aminobenzo[b]quinolizinium (1b) and the 6-amino-9-bromobenzo[b]quinolizinium (1c) exhibit very low fluorescence intensity in water (Φ(fl) < 0.005). However, in water-glycerol mixtures the emission intensity increases by factors of 56 (1b) and 27 (1c) with increasing glycerol content of the solution (0-100 wt%), which indicates the radiationless deactivation of the excited state of 1b and 1c due to a torsional relaxation, i.e. rotation about the exocyclic C(ar)-NH(2) bond. In the case of the bromo-substituted derivative 1c, a viscosity-independent heavy-atom-effect of the bromo substituent leads to additional quenching. The association of 1b and 1c with ds DNA leads to a restricted conformational flexibility of the intercalated ligand and results in an increase of fluorescence intensity. This effect is particularly strong in the presence of poly[dA-dT]-poly[dA-dT]. Upon association with ct DNA or poly[dG-dC]-poly[dG-dC] only very small enhancement of emission intensity (1b) or even a slight quenching (1c) of the fluorescence was observed because of the interfering PET reaction with the guanine residues. Preliminary experiments reveal that the 6-aminobenzo[b]quinolizinium derivatives 1b and 1c may also be employed as protein-sensitive probes, because their emission intensity increases upon association with selected albumins.[Abstract] [Full Text] [Related] [New Search]