These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Author: Roberts JG, Hamilton KL, Sombers LA. Journal: Analyst; 2011 Sep 07; 136(17):3550-6. PubMed ID: 21727955. Abstract: Hydrogen peroxide (H(2)O(2)) is a critically important signaling molecule. Endogenous H(2)O(2) mediates diverse physiological processes both intra- and intercellularly; and enzymatically generated H(2)O(2) is a widely used reporter molecule at biosensors that rely on enzymes to detect non-electroactive species. However, the development and application of electroanalytical methods for the direct detection of this molecule has been challenging because the electron transfer kinetics for the irreversible oxidation of H(2)O(2) are slow. We comparatively characterize the electrochemical oxidation of H(2)O(2) on bare and Nafion(®)-coated platinum and carbon-fiber microdisc electrodes using fast-scan cyclic voltammetry (FSCV). Using a waveform ranging from +0.2 to +1.3 V at 400 V s(-1), the electrocatalytic properties of the platinum surface were not readily apparent, and the carbon-fiber microelectrode demonstrated greater sensitivity and selectivity toward H(2)O(2). Nafion(®)-coating further enhanced detection on carbon electrodes. These results confirm that platinum electrodes, with or without Nafion(®), will not work acceptably with this approach, and confirm the value of carbon-fiber microelectrodes relative to more traditionally used platinum electrodes in the direct detection of rapid H(2)O(2) fluctuations using FSCV.[Abstract] [Full Text] [Related] [New Search]