These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of the nuclear factor κB pathway by heavy ion beams of different linear energy transfer.
    Author: Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G.
    Journal: Int J Radiat Biol; 2011 Sep; 87(9):954-63. PubMed ID: 21732726.
    Abstract:
    PURPOSE: Risk assessment of radiation exposure during long-term space missions requires the knowledge of the relative biological effectiveness (RBE) of space radiation components. Few data on gene transcription activation by different heavy ions are available, suggesting a dependence on linear energy transfer. The transcription factor Nuclear Factor κB (NF-κB) can be involved in cancerogenesis. Therefore, NF-κB activation by accelerated heavy ions of different linear energy transfer (LET) was correlated to survival. MATERIALS AND METHODS: NF-κB-dependent gene induction after exposure to heavy ions was detected in stably transfected human embryonic kidney 293 cells (HEK-pNF-κB-d2EGFP/Neo cells carrying a neomycin resistance), using the destabilized Enhanced Green Fluorescent Protein (d2EGFP) as reporter. RESULTS: Argon (LET 272 keV/μm) and neon ions (LET 91 keV/μm) had the highest potential to activate NF-κB, resulting in a RBE of 8.9 in comparison to 150 kV X-rays. The RBE for survival also reached its maximum in this LET range, with a maximal value of 2. CONCLUSIONS: NF-κB might be involved in modulating survival responses of cells hit by heavy ions in the LET range of 91-272 keV/μm and could therefore become a factor to be considered for risk assessment of radiation exposure during space travel.
    [Abstract] [Full Text] [Related] [New Search]