These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium and calcium share the electrogenic 2 Na(+)-1 H+ antiporter in crustacean antennal glands. Author: Ahearn GA, Franco P. Journal: Am J Physiol; 1990 Nov; 259(5 Pt 2):F758-67. PubMed ID: 2173419. Abstract: Na uptake by short-circuited epithelial brush-border membrane vesicles of Atlantic lobster (Homarus americanus) antennal gland labyrinth was Cl independent, amiloride sensitive, and stimulated by a transmembrane H+ gradient [( H]i greater than [H]o; i is internal, o is external). Na influx (2.5-s uptake) was a sigmoidal function of [Na]o (25-400 mM) when pHi = 5.0 and pHo = 8.0 and followed the Hill equation for binding cooperatively [apparent maximal influx (Jmax) = 271 nmol.mg protein-1.s-1, apparent affinity constant for Na (KNa) = 310 mM Na, and Hill coefficient (n) = 2.41]. Amiloride acted as a competitive inhibitor of Na binding to two external sites with markedly dissimilar apparent amiloride affinities (Ki1 = 14 microM; Ki2 = 1,340 mM). Electrogenic Na-H antiport by these vesicles was demonstrated by equilibrium-shift experiments in which an imposed transmembrane electrical potential difference was the only driving force for exchange. A transport stoichiometry of 2 Na to 1 H was demonstrated with the static-head technique in which a balance of driving forces was attained with 10:1 Na gradient and 100:1 H gradient. External Ca, like amiloride, was a strong competitive inhibitor of Na-H exchange, acting at two sites on the outer vesicular face with markedly different apparent divalent cation affinities (Ki1 = 20 microM; Ki2 = 500 microM). Ca-H exchange by electrogenic Na-H antiporter was demonstrated in complete absence of Na by use of an outward H gradient in presence and absence of amiloride. Both external amiloride (Ki1 = 70 microM; Ki2 = 500 microM) and Na (Ki1 = 12 mM; Ki2 = 380 mM) were competitive inhibitors of Ca-H exchange. These results suggest that the electrogenic 2 Na-1 H exchanger characterized for this crustacean epithelium may also have a role in organismic Ca balance.[Abstract] [Full Text] [Related] [New Search]