These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of leukotriene omega-oxidation by omega-trifluoro analogs of leukotrienes.
    Author: Jedlitschky G, Leier I, Huber M, Mayer D, Keppler D.
    Journal: Arch Biochem Biophys; 1990 Nov 01; 282(2):333-9. PubMed ID: 2173482.
    Abstract:
    omega-Oxidation with subsequent beta-oxidation from the omega-end is the major pathway for inactivation and degradation of leukotrienes. Oxidative degradation of leukotriene E4 (LTE4), N-acetyl-LTE4, and LTB4 was inhibited by the omega-trifluoro analogs of LTE4, omega-trifluoro-LTE4 (omega-F3-LTE4), and (1S,2R)-5-(3-[1-hydroxy-15,15,15-trifluoro-2-(2-1H- tetrazol-5-ylethyl-thio)pentadeca-3(E),5(Z)-dienyl+ ++]phenyl)-1H-tetrazole (LY 245769). The latter substance inhibited the oxidative degradation of LTE4 and N-acetyl-LTE4 in the rat in vivo by 50% at a dose of 7 mumol/kg body weight. In rat hepatocyte cultures both omega-trifluoro analogs interfered with the omega-oxidation of N-acetyl-LTE4 and LTB4 with IC50 values of about 4 microM. Both analogs inhibited the omega-hydroxylation in isolated rat liver microsomes with IC50 values between 16 and 37 microM. This inhibition is apparently competitive. In addition, in liver cytosol, the conversion of the omega-hydroxylated leukotrienes to omega-carboxy-LTE4 and omega-carboxy-LTB4 was inhibited by both compounds. omega-Trifluoro analogs of leukotrienes provide a new tool for interfering with the inactivation of leukotrienes in the omega-oxidation pathway.
    [Abstract] [Full Text] [Related] [New Search]