These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conformational transitions of the H,K-ATPase studied with sodium ions as surrogates for protons. Author: Rabon EC, Bassilian S, Sachs G, Karlish SJ. Journal: J Biol Chem; 1990 Nov 15; 265(32):19594-9. PubMed ID: 2174045. Abstract: Following a recent demonstration that H,K-ATPase can active transport Na+ at a low rate (Polvani, C., Sachs, G., and Blostein, R. (1989) J. Biol. Chem. 264, 17854-17859), we have looked for and found effects of Na+ ions on the conformational state of gastric H,K-ATPase labeled with fluorescein isothiocyanate. Na+ ions reverse the K(+)-induced quench of the fluorescein fluorescence and somewhat enhance fluorescence in the absence of K+ ions. Equilibrium titrations of the cation effects show that Na+ and K+ ions are strictly competitive with apparent dissociation constants of KNa+ = 62 mM (n = 2) and KK+ = 6.6 mM (n = 2). The observations demonstrate that Na+ ions bind to and stabilize the high fluorescence E1 form of the protein while K+ ions stabilize the low fluorescence E2 form. Elevation of pH from 6.4 to 8.0 increased the apparent affinity of the Na+ ions from approximately 62 to 10.2 mM, consistent with competition between protons and Na+. The action of Na+ to stabilize the E1 form was used to measure the rate of the E2K----E1Na transition with a stopped-flow fluorimeter. The rate at pH 6.4 and 20 degrees C is 18.1 s-1. In addition the rate of the reverse conformational transition E1K----E2K has been measured at several K+ concentrations. From the hyperbolic dependence on K+ concentration a maximal rate of 211 +/- 32 s-1 and intrinsic K+ dissociation constant on E1 of 64.6 +/- 3.3 mM have been estimated. The kinetic and equilibrium data are self-consistent and thus support the proposed action of Na+ and K+ ions. Compared with Na,K-ATPase, the H,K-ATPase exhibits a lower affinity for Na+ on E1 and a much faster rate of the E2K----E1Na transition, but a similar affinity for K+ ions on E1 and rate of the transition E1K----E2K. The significance of the similarities and differences in cation specificity and rates of conformational changes of Na,K- and H,K-ATPases is discussed.[Abstract] [Full Text] [Related] [New Search]