These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and anti-inflammatory drug: design, synthesis, and structure-activity relationship. Author: Hayashi S, Sumi Y, Ueno N, Murase A, Takada J. Journal: Biochem Pharmacol; 2011 Oct 01; 82(7):755-68. PubMed ID: 21741371. Abstract: Cyclooxygenase (COX) has been considered as a significant pharmacological target because of its pivotal roles in the prostaglandin biosynthesis and following cascades that lead to various (patho)physiological effects. Non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of fever, inflammation, and pain; however, nonselective COX inhibitors exhibit serious side-effects such as gastrointestinal damage because of their inhibitory activities against COX-1. Thus, COX-1 is constitutive and expressed ubiquitously and serves a housekeeping role, while COX-2 is inducible or upregulated by inflammatory/injury stimuli such as interleukin-1β, tumor necrosis factor-α, and lipopolysaccharide in macrophage, monocyte, synovial, liver, and lung, and is associated with prostaglandin E₂ and prostacyclin production that evokes or sustains systemic/peripheral inflammatory symptoms. Also, hypersensitivity of aspirin is a significant concern clinically. Hence, design, synthesis, and structure-activity relationship of [2-{[(4-substituted)-pyridin-2-yl]carbonyl}-(6- or 5-substituted)-1H-indol-3-yl]acetic acid analogues were investigated to discover novel acid-type COX-2 inhibitor as an orally potent new-class anti-pyretic and anti-inflammatory drug. As significant findings, compounds 1-3 demonstrated potent COX-2 inhibitory activities with high selectivities for COX-2 over COX-1 in human cells or whole-blood in vitro, and demonstrated orally potent anti-pyretic activity against lipopolysaccharide-induced systemic-inflammatory fever model in F344 rats. Also compound 1 demonstrated orally potent anti-inflammatory activity against edema formation and a suppressive effect against PGE₂ production in carrageenan-induced peripheral-inflammation model on the paw of SD rats. These results suggest that compounds 1-3 are potential agents for the treatment of inflammatory disease and are useful for further pharmacological COX-2 inhibitor investigations.[Abstract] [Full Text] [Related] [New Search]