These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional interaction of bone morphogenetic protein and growth hormone releasing peptide in adrenocorticotropin regulation by corticotrope cells.
    Author: Tsukamoto N, Otsuka F, Miyoshi T, Inagaki K, Nakamura E, Terasaka T, Takeda M, Ogura T, Iwasaki Y, Makino H.
    Journal: Mol Cell Endocrinol; 2011 Sep 15; 344(1-2):41-50. PubMed ID: 21742013.
    Abstract:
    Mechanisms by which GHRP stimulates ACTH release in corticotrope cells were investigated using mouse corticotrope AtT20 cells by focusing on the biological activity of BMP-4. GHRP-2 increased ACTH and cAMP secretion by AtT20 cells; however, its effects were less potent than the effects of CRH. BMP-4 suppressed basal ACTH production and POMC transcription, and the inhibition of endogenous BMP receptor signaling led to an increase in ACTH production. Of note, BMP-4 suppressed ACTH production and POMC-promoter activity induced by CRH more efficaciously than that induced by GHRP-2. BMP-4 had no significant effect on cAMP synthesis induced by CRH or GHRP-2. Stimulation with CRH, but not GHRP-2, activated ERK1/2, p38, SAPK/JNK and Akt phosphorylation, in which CRH-induced phosphorylation of ERK and p38 was suppressed by BMP-4. GHRP-2-induced ACTH secretion was not affected by inhibitors of ERK, p38 and Akt pathways, which effectively suppressed CRH-induced ACTH release. Blockage of the cAMP-PKA pathway reversed CRH- as well as GHRP-2-induced ACTH secretion. Furthermore, the inhibition of ERK and p38 significantly reduced cAMP synthesis induced by CRH but not by GHRP-2. Thus, CRH activates ACTH production through ERK and p38 pathways in addition to the cAMP-PKA pathway, which is also activated downstream of MAPK. On the other hand, GHRP-2-induced ACTH production was predominantly linked to the cAMP-PKA pathway. Moreover, CRH and GHRP-2 upregulated BMP receptor signaling, while BMP-4, CRH and GHRP-2 had no significant effect on the expression level of GHSR. In addition, GHRP-2 suppressed the expression of Smad7, which is an inhibitor of the BMP-Smad1/5/8 pathway. Collectively, the results revealed a functional interaction between GHRP-2 and BMP signaling, in which endogenous BMP may act as an autoregulatory system in controlling ACTH production.
    [Abstract] [Full Text] [Related] [New Search]