These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FTIR and FT-Raman spectra, molecular geometry, vibrational assignments, first-order hyperpolarizability, ab initio and DFT calculations for 3,4-dimethoxybenzonitrile.
    Author: Jeyavijayan S, Arivazhagan M.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct 15; 81(1):466-74. PubMed ID: 21752703.
    Abstract:
    Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 3,4-dimethoxybenzonitrile (DMBN) were carried out by the ab initio Hartree-Fock (HF) and density functional theory (DFT) with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The theoretical FTIR and FT-Raman spectra for the title molecule have been constructed.
    [Abstract] [Full Text] [Related] [New Search]