These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Author: Wright PA, Knepper MA. Journal: Am J Physiol; 1990 Dec; 259(6 Pt 2):F961-70. PubMed ID: 2175563. Abstract: To determine whether local production of ammonium by medullary renal tubule segments may contribute to medullary ammonium accumulation, we measured activities of phosphate-dependent glutaminase (PDG) in microdissected tubule segments from rat medulla and cortex. PDG activities were very low in medullary loop of Henle segments but surprisingly high in inner medullary collecting duct (IMCD). In cortex, PDG levels were highest in distal convoluted tubule and cortical thick ascending limb, but substantial levels were also found in proximal segments, as reported previously. To determine effects of acid loading and alkali loading on PDG activity, 0.28 M NH4Cl (acid) or 0.28 M NaHCO3 (alkali) was added to rats' drinking water for 7 days. PDG activities in medullary segments were not affected by acid or alkali intake. Acid intake by rats increased PDG activity in S1 and S2 proximal convoluted tubules severalfold but did not affect the other cortical segments. We conclude that medullary loop of Henle segments probably contribute relatively little to medullary ammonium accumulation because of their low activities. The high PDG activity in IMCD suggests that ammonium could be produced and secreted by this segment. However, because total tubule length of IMCD is very low compared with proximal tubules, it appears unlikely that IMCD contributes substantially to overall renal ammonium production. PDG activity is regulated only in S1 and S2 proximal tubules, consistent with the view that the proximal tubule is the major site of regulation of renal ammonium production.[Abstract] [Full Text] [Related] [New Search]