These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnolol down-regulates HER2 gene expression, leading to inhibition of HER2-mediated metastatic potential in ovarian cancer cells. Author: Chuang TC, Hsu SC, Cheng YT, Shao WS, Wu K, Fang GS, Ou CC, Wang V. Journal: Cancer Lett; 2011 Dec 01; 311(1):11-9. PubMed ID: 21757288. Abstract: Overexpression of the HER2 oncogene contributes to tumor cell invasion, metastasis and angiogenesis and correlates with poor prognosis. Magnolol has been reported to exhibit anti-tumor activities. However, the molecular mechanism of action of magnolol has not been investigated in HER2-positive cancer cells. Therefore, we examined the anti-cancer effects of magnolol on HER2-overexpressing ovarian cancer cells. Magnolol treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level, potentially in part through suppression of NF-κB activation. Treatment of HER2-overexpressing ovarian cancer cells with magnolol down-regulated the HER2 downstream PI3K/Akt signaling pathway, and suppressed the expression of downstream target genes, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2) and cyclin D1. Consistently, magnolol-mediated inhibition of MMP2 activity could be prevented by co-treatment with epidermal growth factor. Migration assays revealed that magnolol treatment markedly reduced the motility of HER2-overexpressing ovarian cancer cells. Furthermore, magnolol-induced apoptosis in HER2-overexpressing ovarian cancer cells was characterized by the up-regulation of cleaved poly(ADP-ribose) polymerase (PARP) and activated caspase 3. These findings suggest that magnolol may act against HER2 and its downstream PI3K/Akt/mTOR-signaling network, thus resulting in suppression of HER2-mediated transformation and metastatic potential in HER2-overexpressing ovarian cancers. These results provide a novel mechanism to explain the anti-cancer effect of magnolol.[Abstract] [Full Text] [Related] [New Search]