These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gain of RNA function in pathological cases: Focus on myotonic dystrophy. Author: Klein AF, Gasnier E, Furling D. Journal: Biochimie; 2011 Nov; 93(11):2006-12. PubMed ID: 21763392. Abstract: Expansion of repeated sequences in non-coding regions of different genes causes a number of inherited diseases including myotonic dystrophies, Huntington disease-like 2, Fragile X tremor/ataxia syndrome and spinocerebellar ataxia 8, 10, 12, 31. Involvement of an RNA gain-of-function mechanism in pathological case has been described and studied in-depth in myotonic dystrophy type 1 (DM1). This inherited neuromuscular disorder is caused by a (CTG)n >50 expansion in the 3' non-coding region of the dystrophia myotonica-protein kinase (DMPK) gene. Expanded CUG transcripts (CUGexp-RNAs) are sequestered in the nucleus within small aggregates and interfere with the regulatory splicing activities of MBNL1 and CELF1 RNA-binding proteins, leading to the misregulation of the alternative splicing of several transcripts. Despite the relevance of aberrant splicing events in this complex pathology, the CUGexp-RNAs trans-dominant effects alter other splicing-independent processes that may also contribute to DM1 pathogenesis. This review will focus on toxic RNA gain-of-function as a pathologic mechanism for DM1 and other repeat expansion disorders.[Abstract] [Full Text] [Related] [New Search]