These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions.
    Author: Baykov AA, Shestakov AS, Kasho VN, Vener AV, Ivanov AH.
    Journal: Eur J Biochem; 1990 Dec 27; 194(3):879-87. PubMed ID: 2176605.
    Abstract:
    Combined evidence obtained from the measurements of pyrophosphate hydrolysis and synthesis, oxygen exchange between phosphate and water, enzyme-bound pyrophosphate formation and Mg2+ binding enabled us to deduce the overall scheme of catalysis by Escherichia coli inorganic pyrophosphatase in the presence of Mg2+. We determined the equilibrium constants for Mg2+ binding to various enzyme species and forward and reverse rate constants for the four steps of the catalytic reaction, namely, binding/release of PPi, hydrolysis/synthesis of PPi and successive binding/release of two Pi molecules. Catalysis by the E. coli enzyme in both directions, in contrast to baker's yeast pyrophosphatase, occurs via a single pathway, which requires the binding of Mg2+ to the sites of four types. Three of them can be filled in the absence of the substrates, and the affinity of one of them to Mg2+ is increased by two orders of magnitude in the enzyme-substrate complexes. The distribution of 18O-labelled phosphate isotopomers during the exchange indicated that hydrolysis of pyrophosphate in the active site is appreciably reversible. The equilibrium constant for this process estimated from direct measurements is 5.0. The ratio of the maximal velocities of pyrophosphate hydrolysis and synthesis is 69. The rate of the synthesis is almost entirely determined by the rate of the release of pyrophosphate from the enzyme. In the hydrolytic reaction, enzyme-bound pyrophosphate hydrolysis and successive release of two phosphate molecules proceed with nearly equal rate constants.
    [Abstract] [Full Text] [Related] [New Search]