These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transferring network topological knowledge for predicting protein-protein interactions. Author: Xu Q, Xiang EW, Yang Q. Journal: Proteomics; 2011 Oct; 11(19):3818-25. PubMed ID: 21770035. Abstract: Protein-protein interactions (PPIs) play an important role in cellular processes within a cell. An important task is to determine the existence of interactions among proteins. Unfortunately, the existing biological experimental techniques are expensive, time-consuming and labor-intensive. The network structures of many such networks are sparse, incomplete and noisy. Thus, state-of-the-art methods for link prediction in these networks often cannot give satisfactory prediction results, especially when some networks are extremely sparse. Noticing that we typically have more than one PPI network available, we naturally wonder whether it is possible to 'transfer' the linkage knowledge from some existing, relatively dense networks to a sparse network, to improve the prediction performance. Noticing that a network structure can be modeled using a matrix model, we introduce the well-known collective matrix factorization technique to 'transfer' usable linkage knowledge from relatively dense interaction network to a sparse target network. Our approach is to establish a correspondence between a source network and a target network via network-wide similarities. We test this method on two real PPI networks, Helicobacter pylori (as a target network) and human (as a source network). Our experimental results show that our method can achieve higher performance as compared with some baseline methods.[Abstract] [Full Text] [Related] [New Search]