These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Author: Tsikas D, Zoerner AA, Jordan J. Journal: Biochim Biophys Acta; 2011 Nov; 1811(11):694-705. PubMed ID: 21771665. Abstract: Compared to the arachidonic acid (C20:4) cascade, the oleic acid (C18:1) family comprises a handful known metabolites. The pathophysiology of oleic acid and its oxidized and nitrated metabolites, i.e., cis-9,10-epoxyoctadecanoic acid (cis-EpOA) and the two vinylic nitro-oleic acids cis-9-nitro-oleic acid (9-NO(2)-OA) and cis-10-nitro-oleic acid (10-NO(2)-OA), is only little investigated and little understood. cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA have been detected in plasma of healthy and ill human subjects by means of gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques in their acid and esterified forms. cis-EpOA is formed from oleic acid by the catalytic action of various cytochrome P450 isozymes. In end-stage liver disease, cis-EpOA plasma concentration is lower than in healthy subjects suggesting liver as the main organ responsible for cis-EpOA synthesis. The origin of 9-NO(2)-OA and 10-NO(2)-OA and of other nitrated oleic acid metabolites is unknown. In vitro models, nitro-oleic acid species can be formed non-enzymatically from oleic acid and nitrogen dioxide. Thus, endogenous nitro-oleic acids could serve as biomarkers of fatty acid nitration by reactive nitrogen species. Synthetic 9-NO(2)-OA and 10-NO(2)-OA at concentrations of three orders of magnitude higher than their endogenous counterparts have interesting pharmacological features and are currently intensely investigated. The present article reviews and discusses currently available analytical methods for the quantitative determination of cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA in biological samples, notably in human plasma, and the potential biological significance of these oleic acid metabolites. Special emphasis is given to GC-MS/MS and LC-MS/MS methods utilizing the stable-isotope dilution technique. The sensitivity and specificity of the MS/MS approach make electron-capture negative ion chemical ionization (ECNICI) GC-MS/MS and negative electrospray ionization (NESI) LC-MS/MS methodologies indispensable in experimental and clinical settings on oxidative and nitrative oleic acid metabolism. These techniques are particularly suited to delineate the oleic acid cascade.[Abstract] [Full Text] [Related] [New Search]