These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Circadian variation in placental and hepatic clock genes in rat pregnancy. Author: Wharfe MD, Mark PJ, Waddell BJ. Journal: Endocrinology; 2011 Sep; 152(9):3552-60. PubMed ID: 21771885. Abstract: Clock genes drive circadian rhythms in a range of physiological processes both centrally and in peripheral tissues such as the liver. The aims of this study were to determine whether the two functionally-distinct zones of the rat placenta (junctional and labyrinth) differentially express clock genes and, if so, whether these exhibit circadian patterns. Rats were sampled from d 21 of pregnancy (term = d 23) and from diestrus I of the estrous cycle. Adult liver (all animals), fetal liver, and placental zones (pregnant animals) were collected at 0800, 1400, 2000, and 0200 h. Both zones of the rat placenta expressed all seven canonical clock genes (Clock, Bmal1, Per1, Per2, Per3, Cry1, and Cry2), but there were marked zonal differences and, unlike in maternal liver, circadian variation in placenta was limited. Similarly, placental expression of Vegf varied with zone but not time of day. Pregnancy also led to marked changes in hepatic clock gene expression, with peak levels of Per1, Cry1, and Cry2 all reduced, Per3 increased, and circadian variation in Clock expression lost. All clock genes were expressed in fetal liver, but there was less circadian variation than in maternal liver. Similarly, fetal corticosterone levels remained stable across the day, whereas maternal corticosterone showed clear circadian variation. In conclusion, our data show that the rat placenta expresses all canonical clock genes in a highly zone-specific manner but with relatively little circadian variation. Moreover, pregnancy alters the expression and circadian variation of clock genes in maternal liver, possibly contributing to maternal physiological adaptations.[Abstract] [Full Text] [Related] [New Search]