These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterizing TiO2(110) surface states by their work function. Author: Borodin A, Reichling M. Journal: Phys Chem Chem Phys; 2011 Sep 14; 13(34):15442-7. PubMed ID: 21779605. Abstract: The unreconstructed TiO(2)(110) surface is prepared in well-defined states having different characteristic stoichiometries, namely reduced (r-TiO(2), 6 to 9% surface vacancies), hydroxylated (h-TiO(2), vacancies filled with OH), oxygen covered (ox-TiO(2), oxygen adatoms on a stoichiometric surface) and quasi-stoichiometric (qs-TiO(2), a stoichiometric surface with very few defects). The electronic structure and work function of these surfaces and transition states between them are investigated by ultraviolet photoelectron spectroscopy (UPS) and metastable impact electron spectroscopy (MIES). The character of the surface is associated with a specific value of the work function that varies from 4.9 eV for h-TiO(2), 5.2 eV for r-TiO(2), 5.35 eV for ox-TiO(2) to 5.5 eV for qs-TiO(2). We establish the method for an unambiguous characterization of TiO(2)(110) surface states solely based on the secondary electron emission characteristics. This is facilitated by analysing a weak electron emission below the nominal work function energy. The emission in the low energy cut-off region appears correlated with band gap emission found in UPS spectra and is attributed to localised electron emission through Ti(3+)(3d) states.[Abstract] [Full Text] [Related] [New Search]