These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Key role of diacylglycerol-mediated 12-lipoxygenase product formation in angiotensin II-induced aldosterone synthesis. Author: Natarajan R, Dunn WD, Stern N, Nadler J. Journal: Mol Cell Endocrinol; 1990 Aug 20; 72(2):73-80. PubMed ID: 2178102. Abstract: We have shown earlier that the 12-lipoxygenase product of arachidonic acid (AA), 12-hydroxyeicosatetraenoic acid (12-HETE), plays an important role in mediating angiotensin II (AII)-induced aldosterone secretion (J. Clin. Invest. (1987) 80, 1763). In the present study, we have evaluated whether diacylglycerol (DG) is the source of arachidonic acid giving rise to this 12-HETE. Treatment of rat adrenal glomerulosa cells with a DG lipase inhibitor, RHC 80267, which prevents conversion of DG to AA and HETEs, blocked AII-induced aldosterone and 12-HETE formation. In contrast, a DG kinase inhibitor, R59022, which prevents conversion of DG to phosphatidic acid, potentiated AII-induced aldosterone and 12-HETE formation. These two inhibitors block DG metabolism which would be expected to lead to increased DG levels and protein kinase C activity and AII-induced steroidogenesis. However, only R59022 potentiated AII action while RHC 80267 was inhibitory. This suggests that conversion of DG to AA and 12-HETE is important for AII action. Further proof for this was obtained by measuring [3H]AA-labeled DG levels. The combination of the inhibitors significantly potentiated AII-induced DG formation even though this same combination was inhibitory on AII-induced aldosterone and 12-HETE. Thus, the inhibitory effect of RHC 80267 is due to blockade of AA release and not of DG formation. These results suggest that DG plays a dual role in AII action, both as an activator of protein kinase C and as a source of AA for 12-HETE formation.[Abstract] [Full Text] [Related] [New Search]