These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Author: Bo X, Bai J, Qi B, Guo L. Journal: Biosens Bioelectron; 2011 Oct 15; 28(1):77-83. PubMed ID: 21784627. Abstract: Poly(ionic liquid) (PIL) coated ordered mesoporous carbons (OMCs) were prepared by in situ polymerization of 3-ethyl-1-vinylimidazolium tetrafluoroborate ([VEIM]BF(4)) monomer on OMCs matrix. PIL on the surface of OMCs can provide sufficient binding sites to anchor the precursors of metal ion. PIL/OMCs were employed as support material for the deposition and formation of ultra-fine Pt nanoparticles, via the self-assembly between the negative Pt precursor and positively charged functional groups of PIL-functionalized OMCs. The combination of the unique properties of each component endows Pt/PIL/OMCs as a good electrode material. Compared with the Pt/OMCs nanocomposite, the Pt/PIL/OMCs modified electrode displays high electrocatalytic activity towards hydrogen peroxide (H(2)O(2)) and gives linear range from 1.0 × 10(-7) to 3.2 × 10(-3) M (R=0.999). The Pt/PIL/OMCs responds very rapidly to the changes in the level of H(2)O(2), producing steady-state signals within 4-5s. A high sensitivity of 24.43 μA mM(-1) and low detection limit of 0.08 μM was obtained at Pt/PIL/OMCs modified electrode towards the reduction of H(2)O(2). The improved activity makes Pt/PIL/OMCs nanocomposite promising for being developed as an attractive robust and new electrode material for electrochemical sensors and biosensors design.[Abstract] [Full Text] [Related] [New Search]