These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks. Author: Liu J, Benin AI, Furtado AM, Jakubczak P, Willis RR, LeVan MD. Journal: Langmuir; 2011 Sep 20; 27(18):11451-6. PubMed ID: 21786829. Abstract: Metal-organic frameworks with unsaturated metal centers in their crystal structures, such as Ni/DOBDC and Mg/DOBDC, are promising adsorbents for carbon dioxide capture from flue gas due to their high CO(2) capacities at subatmospheric pressures. However, stability is a critical issue for their application. In this paper, the stabilities of Ni/DOBDC and Mg/DOBDC are investigated. Effects of steam conditioning, simulated flue gas conditioning, and long-term storage on CO(2) adsorption capacities are considered. Results show that Ni/DOBDC can maintain its CO(2) capacity after steam conditioning and long-term storage, whereas Mg/DOBDC does not. Nitrogen isotherms for Mg/DOBDC show a drop in surface area after steaming, corresponding to the decrease in CO(2) adsorption, which may be caused by a reduction of unsaturated metal centers in its structure. Conditioning with dry simulated flue gas at room temperature only slightly affects CO(2) adsorption in Ni/DOBDC. However, introducing water vapor into the simulated flue gas further reduces the CO(2) capacity of Ni/DOBDC.[Abstract] [Full Text] [Related] [New Search]