These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An online learning approach to occlusion boundary detection. Author: Jacobson N, Freund Y, Nguyen TQ. Journal: IEEE Trans Image Process; 2012 Jan; 21(1):252-61. PubMed ID: 21788193. Abstract: We propose a novel online learning-based framework for occlusion boundary detection in video sequences. This approach does not require any prior training and instead "learns" occlusion boundaries by updating a set of weights for the online learning Hedge algorithm at each frame instance. Whereas previous training-based methods perform well only on data similar to the trained examples, the proposed method is well suited for any video sequence. We demonstrate the performance of the proposed detector both for the CMU data set, which includes hand-labeled occlusion boundaries, and for a novel video sequence. In addition to occlusion boundary detection, the proposed algorithm is capable of classifying occlusion boundaries by angle and by whether the occluding object is covering or uncovering the background.[Abstract] [Full Text] [Related] [New Search]