These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemical and crystallographic events in the caries process.
    Author: LeGeros RZ.
    Journal: J Dent Res; 1990 Feb; 69 Spec No():567-74; discussion 634-6. PubMed ID: 2179315.
    Abstract:
    The chemical and crystallographic events associated with the caries process can be described based on the results from the following studies: (a) effects of carbonate, magnesium, fluoride, and strontium on the physico-chemical properties--lattice parameters, crystallinity (crystal size and strain); dissolution properties of synthetic apatites; (b) factors influencing the in vitro formation and transformation of DCPD, OCP, AP (Ca-deficient apatites), FAP, beta-TCMP (Mg-substituted), and CaF2; and (c) studies on properties (crystallinity, composition, chemical, and thermal stabilities) of enamel, dentin, and bone. The dissolution of CO3-rich/Mg-rich/F-poor dental apatite crystals and re-precipitation of CO3-poor/Mg-poor/F-rich apatite in the presence of F- ions in solution contribute to a more acid-resistant surface layer of the caries lesion. Fluoride promotes the formation of less Ca-deficient and more stable apatite crystals. The presence of Ca, P, and F in solution inhibits dissolution of apatite more than does the presence of F alone. Low levels of F in solution promote the formation of (F, OH)-apatite, even under very acid conditions; an increase in F levels causes the formation of CaF2 at the expense of DCPD or apatite, especially in acid conditions. F in apatite and/or in solution suppresses extensive dissolution of dental apatite and enhances the formation of (F, OH)-apatite crystals which are more resistant against acid-dissolution than are F-free apatite crystals.
    [Abstract] [Full Text] [Related] [New Search]