These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An unusually flexible expanded hexaamine cage and its Cu(II) complexes: variable coordination modes and incomplete encapsulation.
    Author: Qin CJ, James L, Chartres JD, Alcock LJ, Davis KJ, Willis AC, Sargeson AM, Bernhardt PV, Ralph SF.
    Journal: Inorg Chem; 2011 Sep 19; 50(18):9131-40. PubMed ID: 21806034.
    Abstract:
    The bicyclic hexaamine "cage" ligand Me(8)tricosaneN(6) (1,5,5,9,13,13,20,20-octamethyl-3,7,11,15,18,22-hexaazabicyclo[7.7.7]tricosane) is capable of encapsulating octahedral metal ions, yet its expanded cavity allows the complexed metal to adopt a variety of geometries comprising either hexadentate or pentadentate coordination of the ligand. When complexed to Cu(II) the lability of the metal results in a dynamic equilibrium in solution between hexadentate- and pentadentate-coordinated complexes of Me(8)tricosaneN(6). Both [Cu(Me(8)tricosaneN(6))](ClO(4))(2) (6-coordinate) and [Cu(Me(8)tricosaneN(6))](S(2)O(6)) (5-coordinate) have been characterized structurally. In weak acid (pH 1) a singly protonated complex [Cu(HMe(8)tricosaneN(6))](3+) has been isolated that finds the ligand binding as a pentadentate with the uncoordinated amine being protonated. vis-NIR and electron paramagnetic resonance (EPR) spectroscopy show that the predominant solution structure of [Cu(Me(8)tricosaneN(6))](2+) at neutral pH comprises a five-coordinate, square pyramidal complex. Cyclic voltammetry of the square pyramidal [Cu(Me(8)tricosaneN(6))](2+) complex reveals a reversible Cu(II/I) couple. All of these structural, spectroscopic, and electrochemical features contrast with the smaller cavity and well studied "sarcophagine" (sar, 3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane) Cu(II) complexes which are invariably hexadentate coordinated in neutral solution and cannot stabilize a Cu(I) form.
    [Abstract] [Full Text] [Related] [New Search]