These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep.
    Author: Rojas JM, Rodríguez-Calvo T, Peña L, Sevilla N.
    Journal: Vaccine; 2011 Sep 16; 29(40):6848-57. PubMed ID: 21807057.
    Abstract:
    Bluetongue virus (BTV), an economically important orbivirus of the Reoviridae family, is a non-enveloped, dsRNA virus that causes a haemorrhagic disease mainly in sheep, but little is known of the cellular immunity elicited against BTV. We observed that vaccination of interferon type I-deficient mice (IFNAR((-/-))), or inoculation of the wild type C57BL/6 strain with BTV-8, induced a strong T cell response. Therefore, we proceeded to identify some of the T cell epitopes targeted by the immune system. We selected, using H-2(b)-binding predictive algorithms, 3 major histocompatibility complex (MHC)-class II-binding peptides and 7 MHC-class I binding peptides from the BTV-8 core protein VP7, as potential T cell epitopes. Peptide binding assays confirmed that all 7 MHC-class I predicted peptides bound MHC-class I molecules. Three MHC-class I and 2 MHC-class II binding peptide consistently elicited peptide-specific IFN-γ production (as measured by ELISPOT assays) in splenocytes from C57BL/6 BTV-8-inoculated mice and IFNAR((-/-))-vaccinated mice. The functionality of these T cells was confirmed by proliferation and cytotoxicity assays. Flow cytometry analysis demonstrated that CD8(+) T cells responded to MHC-class I binding peptides and CD4(+) T cells to MHC-class II binding peptides. Importantly, these 5 epitopes were also able to induced IFN-γ production in sheep inoculated with BTV-8. Taken together, these data demonstrate the activation of BTV-specific T cells during infection and vaccination. The characterisation of these novel T cell epitopes may also provide an opportunity to develop DIVA-compliant vaccination approach to BTV encompassing a broad-spectrum of serotypes.
    [Abstract] [Full Text] [Related] [New Search]