These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry. Author: Villar-Pulido M, Gilbert-López B, García-Reyes JF, Martos NR, Molina-Díaz A. Journal: Talanta; 2011 Sep 15; 85(3):1419-27. PubMed ID: 21807204. Abstract: A fast liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) method has been developed for simultaneous quantitative multiclass determination of residues of selected antibiotics and other veterinary drugs (benzalkonium chloride, ethoxyquin, leucomalachite green (LMG), malachite green (MG), mebendazole, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfathiazole and trimethoprim) in shrimps. Different sample treatment methodologies were tested for the extraction of the targeted species based on either liquid partitioning with different solvents, solid-phase extraction or and matrix solid-phase dispersion. The final selected extraction method consisted of solid-liquid extraction protocol using acetonitrile as solvent followed by a clean-up step with primary secondary amine (QuEChERS). Recovery rates for the extraction of the selected multiclass chemicals were in the range 58-133%. Subsequent identification, confirmation and quantitation were carried out by LC-TOFMS analysis using a reverse-phase C(18) column with 1.8 μm particle size. The confirmation of the target species was based on accurate mass measurements of the protonated molecules ([M+H](+)) and their fragment ions, obtaining routine accuracy errors lower than 2 ppm in most cases. The optimized LC-TOFMS method displayed excellent sensitivity for the studied analytes, with limits of detection (LODs) in the range 0.06-7 μg kg(-1). Finally, the proposed method was successfully applied to the analysis of 12 shrimp samples collected from different supermarkets, showing the potential applicability of the method for ultratrace detection of these chemicals in such complex matrix.[Abstract] [Full Text] [Related] [New Search]