These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy. Author: Gallardo-Moreno AM, Navarro-Pérez ML, Vadillo-Rodríguez V, Bruque JM, González-Martín ML. Journal: Colloids Surf B Biointerfaces; 2011 Nov 01; 88(1):373-80. PubMed ID: 21807482. Abstract: One of the principal techniques for evaluating the surface hydrophobicity of biological samples is contact angle. This method, applied readily to flat-smooth-inert surfaces, gives rise to an important debate when implemented with microbial lawns. After its initial description, in 1984, several authors have carried out modifications of the technique but the results obtained have not been previously judged. This work focuses on the particularities of contact angle measurements on bacterial lawns and enhances the idea of the impossibility of using water contact angle as a universal measurement of bacterial hydrophobicity. Contact angles can only be used as relative indicators of hydrophobicity, in a similar way to tests based on microbial adhesion to solvents. The strong dependence of contact angles on dried bacterial lawns with measuring time and environmental conditions (e.g. pH of the media) preclude the estimation of their absolute values, and so, of the cells surface Gibbs energy. Yet, for a given measuring time, it is found that the hydrophobicity and the apparent bacterial surface Gibbs energy components are qualitatively related to the bacterial surface electrical potential. In particular, a hydrophobic increase is always accompanied by an increase of the cells Lifshitz-Van der Waals component and a decrease of their acid-base component and absolute zeta potential. Therefore, the present study shows that the physico-chemical surface properties that characterize bacteria are not independent, and one of them can be qualitatively described in terms of the others when measuring contact angles at a fixed time after the drying of the microbial beds.[Abstract] [Full Text] [Related] [New Search]