These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction.
    Author: Geng X, Henderson WA.
    Journal: Biotechnol Bioeng; 2012 Jan; 109(1):84-91. PubMed ID: 21809330.
    Abstract:
    Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.
    [Abstract] [Full Text] [Related] [New Search]