These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of thioethers on DNA platination by trans-platinum complexes. Author: Li C, Huang R, Ding Y, Sletten E, Arnesano F, Losacco M, Natile G, Liu Y. Journal: Inorg Chem; 2011 Sep 05; 50(17):8168-76. PubMed ID: 21812429. Abstract: Increasing evidence indicates that sulfur-containing molecules can play important roles in the activity of platinum anticancer drugs. Although nuclear DNA is retained to be the ultimate target, these platinum compounds can readily react with a variety of other substrates containing a soft donor atom, such as proteins, peptides, and low molecular weight biomolecules, before reaching DNA. In a recent study it was demonstrated that the DNA platination rate of a trans-geometry antitumor drug was dramatically enhanced by methionine binding, thus suggesting that the thioether could serve as a catalyst for DNA platination. In this work we performed detailed studies on the reactions of a widely investigated and very promising trans-platinum complex having two iminoethers and two chlorido ligands, trans-EE, with methionine (Met) and guanosine 5'-monophosphate (GMP). The results show that in the reaction of trans-EE with methionine the bisadduct is the dominant species in the early stage of the reaction. The reaction is also influenced by chloride concentration: at low NaCl the bis-methionine adduct is formed in preference, whereas the monoadduct is favored at high NaCl concentration. Not only the monomethionine complex, trans-PtCl(E-iminoether)(2)(AcMet), but also the bis-methionine adduct, trans-Pt(E-iminoether)(2)(AcMet)(2), which has already lost both leaving chlorides, can react with GMP to form the ternary platinum complex trans-Pt(E-iminoether)(2)(AcMet)(GMP). The latter reaction discloses the possibility of direct coordination to DNA of a platinum-protein adduct, in which the two carrier ligands remain intact; this is not the case of cis-oriented platinum complexes, like cisplatin, for which formation of a ternary complex is usually accompanied by loss of at least one carrier ligand. Interestingly, isomerization from S to N coordination of one methionine takes place in the bis-methionine complex at neutral pH, while the monoadduct appears to be stable. The shift from S to N coordination of one methionine in the trans-bis-methionine adduct can easily account for the obtainment of the cis isomer in the bis-chelated Pt(Met-S,N)(2) end product.[Abstract] [Full Text] [Related] [New Search]