These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? Author: Thornton B, Zhang Z, Mayes RW, Högberg MN, Midwood AJ. Journal: Rapid Commun Mass Spectrom; 2011 Sep 15; 25(17):2433-8. PubMed ID: 21818802. Abstract: Quantifying the concentrations of organics such as phospholipid fatty acids (PLFAs) and n-alkanes and measuring their corresponding (13)C/(12)C isotope ratios often involves two separate analyses; (1) quantification by gas chromatography flame ionisation detection (GC-FID) or gas chromatography/mass spectrometry (GC/MS), and (2) (13) C-isotope abundance analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS). This requirement for two separate analyses has obvious disadvantages in terms of cost and time. However, there is a history of using the data output of isotope ratio mass spectrometers to quantify various components; including the N and C concentrations of solid materials and CO(2) concentrations in gaseous samples. Here we explore the possibility of quantifying n-alkanes extracted from sheeps' faeces and fatty acid methyl esters (FAMEs) derivatised from PLFAs extracted from grassland soil, using GC-C-IRMS. The results were compared with those from GC-FID analysis of the same extracts. For GC-C-IRMS the combined area of the masses for all the ions (m/z 44, 45 and 46) was collected, referred to as 'area all', while for the GC-FID analysis the peak area data were collected. Following normalisation to a common value for added internal standards, the GC-C-IRMS 'area all' values and the GC-FID peak area data were directly compared. Strong linear relationships were found for both n-alkanes and FAMEs. For the n-alkanes the relationships were 1:1 while, for the FAMEs, GC-C-IRMS overestimated the areas relative to the GC-FID results. However, with suitable reference material 1:1 relationships were established. The output of a GC-C-IRMS system can form the basis for the quantification of certain organics including FAMEs and n-alkanes.[Abstract] [Full Text] [Related] [New Search]